Circle the correct answer on the question sheets AND fill in the corresponding circle on the separate answer sheet.

The missed approach for the BARO-VNAV and LNAV is initiated at the

A. decision height.
B. final approach fix.
C. missed approach point.

What effect will a change in wind direction have upon maintaining a 3° glide slope at a constant true airspeed?

A. Rate of descent must be constant to remain on the glide slope.
B. When ground speed increases, rate of descent must increase.
C. When ground speed decreases, rate of descent must increase.

To remain on the ILS glidepath, the rate of descent must be

A. increased if the ground speed is increased.
B. decreased if the airspeed is increased.
C. decreased if the ground speed is increased.

(Refer to Figure 124.) The point on the teardrop procedure where the turn in bound (LOC RWY 35) Duncan/Halliburton, is initiated is determined by

A. Timing for a 2 minute maximum.
B. DME and timing to remain within the 10-NM limit.
C. Estimating ground speed and radius of turn.

(Refer to Figure 85, Figure 86.) Which combination of indications confirm that you are approaching WAGGE intersection slightly to the right of the LOC centerline on departure?

A. 1 and 3.
B. 1 and 4.
C. 2 and 3.

(Refer to Figure 120.) The symbol on the plan view of the ILS RWY 35R procedure at DEN represents a minimum safe sector altitude within 25 NM of

A. Denver VORTAC.
B. Denver/Stapleton International Airport.
C. Gandi outer marker.

[7] Gleim #: 6.10.63 -- Source: AIM Para 5-4-10

When making a “timed approach” from a holding fix at the outer marker, the pilot should adjust the

A. holding pattern to leave the final approach fix inbound at the assigned time.
B. airspeed at the final approach fix in order to arrive at the missed approach point at the assigned time.
C. holding pattern to start the procedure turn at the assigned time.

Which is true regarding the use of an instrument departure procedure chart?

A. The use of instrument departure procedures is mandatory.
B. To use an instrument departure procedure, the pilot must possess at least the textual description of the approved procedure.
C. To use an instrument departure procedure, the pilot must possess both the textual and graphic form of the approved procedure.
When using GPS for navigation and instrument approaches, any required alternate airport must have

A. a GPS approach that is anticipated to be operational and available at the ETA.
B. an approved operational instrument approach procedure other than GPS.
C. authorization to fly approaches under IFR using GPS avionics systems.

[10] Gleim #: 6.6.35 -- Source: FAR 91.175
Which of these facilities may be substituted for an MM during a complete ILS IAP?

A. Surveillance and precision radar.
B. Compass locator and precision radar.
C. A VOR/DME fix.

When may you obtain a contact approach?

A. ATC may assign a contact approach if you are below the clouds and the visibility is at least 1 mile.
B. ATC may assign a contact approach if VFR conditions exist or you report the runway in sight and are clear of clouds.
C. ATC will assign a contact approach only upon request if the reported visibility is at least 1 mile.

[12] Gleim #: 6.5.29 -- Source: AIM Para 1-1-9
Which indications will a pilot receive where an IM is installed on a front course ILS approach?

A. Alternate dashes and a blue light.
B. Six dots per second and a flashing white light.
C. One dot per second and a steady amber light.
(Refer to Figure 119.) The final approach fix for the precision approach is located at

A. DENAY intersection.
B. ROMEN intersection/locator outer marker.
C. Glide slope intercept (lightning bolt).

[14] Gleim #: 6.5.24 -- Source: FAR 91.175

If all ILS components are operating and the required visual references are not established, the missed approach should be initiated upon

A. arrival at the DH on the glide slope.
B. expiration of the time listed on the approach chart for missed approach.
C. arrival at the middle marker.

(Refer to Figure 121.) During the ILS RWY 30R procedure at DSM, what MDA applies should the glide slope become inoperative?

A. 1,157 feet.
B. 1,320 feet.
C. 1,360 feet.

[16] Gleim #: 6.5.21 -- Source: AIM Para 1-1-9
(Refer to Figure 139, Figure 142.) Which displacement from the localizer and glide slope at the outer marker is indicated?

A. 775 feet to the left of the localizer centerline and 420 feet below the glide slope.
B. 1,550 feet to the right of the localizer centerline and 210 feet above the glide slope.
C. 1,550 feet to the left of the localizer centerline and 210 feet below the glide slope.
(Refer to Figure 131.) What is the landing distance available for the VOR/DME RNAV RWY 4R approach at BOS?

A. 8,850 ft.
B. 10,005 ft.
C. 7,000 ft.

[18] Gleim #: 6.11.76 -- Source: AIM Para 5-3-7
(Refer to Figure 113.) You receive this ATC clearance:
“...CLEARED TO THE ABC VORTAC. HOLD SOUTH ON THE ONE EIGHT ZERO RADIAL...”

What is the recommended procedure to enter the holding pattern?

A. Teardrop only.
B. Direct only.
C. Parallel only.

(Refer to Figure 152.) Why is there a note stating a temperature limitation for executing this approach with BARO-VNAV equipment?

A. The decision altitude and final approach segment height above obstacles or terrain is unsafe when temperatures are lower than charted.
B. The missed approach climb gradient exceeds the airplane maximum standard of 40 to 1 at low temperatures.
C. The descent gradient exceeds the maximum standard of 400-foot per Nautical Mile at low temperatures.
When passing through an abrupt wind shear which involves a shift from a tailwind to a headwind, what power management would normally be required to maintain a constant indicated airspeed and ILS glide slope?

A. Higher than normal power initially, followed by a further increase as the wind shear is encountered, then a decrease.
B. Lower than normal power initially, followed by a further decrease as the wind shear is encountered, then an increase.
C. Higher than normal power initially, followed by a decrease as the shear is encountered, then an increase.
DEPARTURE ROUTE DESCRIPTION

TAKE-OFF RUNWAYS 16/L: Climb via I-RNO Localizer south course to WAGGE INT then via radar vectors to assigned route.

LOST COMMUNICATIONS: If not in contact with departure control within one minute after takeoff, or if communications are lost before reaching 9000', continue climb via I-RNO localizer south course to WAGGE INT, turn left, proceed direct FMG VORTAC. Cross FMG VORTAC at or above MCA, thence via assigned route or climb in holding pattern northeast on FMG R-041, left turns to cross FMG VORTAC at or above MCA for assigned route.
Figure 86 - CDI and OBS Indicators.
Figure 113 - Aircraft Course and DME Indicator.
Figure 119 - ILS RWY 24R (LAX).
Figure 120 - ILS RWY 35R (DEN).
Figure 121 - ILS RWY 30R (DSM).
Figure 124 - LOC RWY 35, Duncan, Oklahoma.
VOR/DME RNAV RWY 4R

Figure 131 - VOR/DME RNAV RWY 4R.
Figure 139 - Glide Slope and Localizer Illustration.
Figure 142 - OBS, ILS, and GS Displacement.
Figure 152 - RNAV (GPS) RWY 30, North Plate Regional Airport Lee Bird Field (LBF).
Name: __________________________ Date: ______________________

1) A B C
2) A B C
3) A B C
4) A B C
5) A B C
6) A B C
7) A B C
8) A B C
9) A B C
10) A B C
11) A B C
12) A B C
13) A B C
14) A B C
15) A B C
16) A B C
17) A B C
18) A B C
19) A B C
20) A B C